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We propose a solvable model for the migration-driven aggregate growth on completely connected scale-free
networks. A reversible migration system is considered with the produce rate kernel K�k ; l � i ; j��kuiv�lj�� or the
generalized kernel K�k ; l � i ; j���k�i�+k�i���lj��, at which an i-mer aggregate locating on the node with j links
gains one monomer from a k-mer aggregate locating on the node with l links. It is found that the evolution
behavior of the system depends crucially on the details of the rate kernel. In some cases, the aggregate size
distribution approaches a scaling form and the typical size S�t , l� of the aggregates locating on the nodes with
l links grows infinitely with time; while in other cases, a gelation transition may emerge in the system at a finite
critical time. We also introduce a simplified model, in which the aggregates independently gain or lose one
monomer at the rate I1�k ; l�= I2�k ; l��k�l�, and find the similar results. Most intriguingly, these models exhibit
that the evolution behavior of the total distribution of the aggregates with the same size is drastically different
from that for the corresponding system in normal space. We test our analytical results with the population data
of all counties in the U.S. during the past century and find good agreement between the theoretical predictions
and the realistic data.
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I. INTRODUCTION

In the last few decades, considerable interest has been
devoted to understanding the nonequilibrium aggregate
growth, which underlies a wide variety of natural and social
processes such as aerosol formation and crystal growth
�1–4�. Among such investigations, a great deal of effort has
been focused on the kinetics of aggregate growth through the
binary coalescence mechanism, Ai+Aj→Ai+j, namely, the
aggregates Ai and Aj can bond spontaneously to form a larger
aggregate Ai+j �5–9�. Here, Ai denotes an aggregate charac-
terized by its mass i, or equivalently, a group characterized
only by the number of its component individuals. Recently,
many researches have been carried out to study the
migration-driven �or equivalently, exchange-driven� growth
mechanism which frequently arises in physics and in social
science �10–13�. Ispolatov and co-workers have introduced
several kinetic exchange models to describe the wealth redis-
tribution of individuals in economical activities �14�.
Leyvraz and Redner have proposed a migration-driven
growth model and provided some qualitative predictions of
the evolution of city population �15�. In these models, the
aggregates evolve according to the irreversible biased migra-
tion mechanism, Ak+Al→Ak−1+Al+1 �k� l�. That is, a larger
aggregate of size l gains one monomer from a smaller aggre-
gate of size k, while the reverse process is forbidden. The
results have exhibited that the kinetics of the migration-
driven aggregate growth falls in a different scaling regime as
compared to those conventional binary coagulation pro-
cesses. Generally, monomer migrations could go from the
larger to the smaller aggregates as well as from the smaller to

the larger. Ben-Naim and Krapivsky have studied a class of
exchange-driven growth processes and their results can be
applied to coarsening in the infinite range Ising-Kawasaki
model and in the electrostatically driven granular layers �16�.
In our previous works �17,18�, we have investigated the ki-
netics of the migration-driven aggregation model with a size-
dependent unbiased rate kernel and found that the aggregate
size distribution approaches the conventional scaling form.
Thus it is believed that such migration-driven aggregation
processes, as well as those conventional binary coagulation
processes, can give rise to rich evolution kinetics.

It should also be pointed out that most of those works on
aggregate growth phenomena have been performed by means
of the mean-field rate equation or by Monte Carlo simula-
tion. In the mean-field framework, the system is assumed to
be spatial homogeneity and the fluctuations in the densities
of reactants is negligible. Thus the aggregates are considered
to be homogeneously distributed in the space throughout the
process and the reaction between any two aggregates is as-
sumed to be completely random, while in Monte Carlo simu-
lations �5,6�, the aggregates are put onto lattice sites, and the
coagulation reaction occurs whenever two aggregates occupy
the same lattice site. Such an aggregate growth process can
be regarded as a network, in which the nodes are the tempo-
ral “lodgements” of the aggregates and the links represent
the reactions between two aggregates. Obviously, in theoret-
ical works, an aggregate growth process is modeled as a
completely random graph, while the simulations of aggregate
growth are carried out on a regular network. Both theoretical
and simulation investigations have been performed assuming
that all nodes �i.e., aggregates� in the networks have approxi-
mately the same degree of “links,” namely, the same number
of contacts with other nodes. However, natural and social
situations are rarely well described by such random or regu-
lar networks. Despite the different natures of their elements
and interactions among the elements, the complex weblike
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structures of many distinct real-world systems have been
found to have a common feature: their degree distributions
take a scale-free power-law form �19�. Let P�k� be the prob-
ability of a node with k links, and the power-law degree
distribution can then be expressed as P�k��k−�, where the
exponent � denotes the degree properties of scale-free net-
works �SFNs�. In both natural and artificial networks, � is
usually in the range of 2���3 �20�.

Since the topology of scale-free networks deviates from
that of the homogeneous regular lattices and random graphs,
the conventional models �such as Ising model, epidemic
model, percolation model, and so on� on SFNs exhibit dy-
namic behaviors quite different from those obtained in tradi-
tional ways �21–24�. Moreover, Gallos and Argyrakis have
found that the chemical reactions of the model systems of
A+A→0 and A+B→0 performed on SFNs exhibit drasti-
cally different behaviors as compared to the same reactions
in normal space �25�. Catanzaro et al. have presented a de-
tailed analytical study of the A+A→0 diffusion-annihilation
process in uncorrelated SFNs �26�, and Gallos et al. have
compared the same reaction-diffusion process on SFNs cre-
ated with either the configuration model or the uncorrelated
configuration model �27�. Laguna et al. have investigated the
static annihilation on complex networks to obtain the tempo-
ral evolution of the distribution of surviving sites with an
arbitrary number of connections �28�. These works have
verified that the aggregate growth proceeding on SFNs can
reveal intriguing evolution behaviors. To the best of our
knowledge, such investigations combining kinetic migration
processes and complex networks remain unexplored.

In this work, we investigate the kinetics of the migration-
driven aggregate growth on completely connected scale-free
networks. In the system, the aggregates evolve according to a
nondirectional migration reaction,

Akl + Aij →
K�k;l�i;j�

Ak−1,l + Ai+1,j ,

where Akl denotes an aggregate of size k occupying a node
with l links and K�k ; l � i ; j� denotes the rate at which one
monomer is transferred from the aggregates Akl to Aij. This
model interpolates between the migration-driven aggregate
growth model on completely random graphs and that on
regular lattices. We believe that the migration systems on
SFNs are of interest in studying the scaling properties of
their evolution behaviors. Employing the rate equation ap-
proach, we have determined the analytical solution of our
model and found that in the long-time limit, the aggregate
size distribution does approach a scaling form different from
that of the corresponding migration system in homogenous
space.

It is also believed that the model of migration-driven
growth on SFNs can mimic many phenomena in natural and
social science, such as the county population distribution. It
has been argued that the growth of city population may be
attributed, to a great extent, to population migrations �15�.
And the population distribution ck�t� of large cities is found
to obey the Zipf’s law �29� and takes the power-law form,
ck�t��k−	. For many countries, the exponent 	 is larger than
2 �11,30�. However, for conventional migration models

�15,18�, the exponent 	 is always smaller than 2. In fact, the
rate of population migrations between two cities has relation
with their traffic status. And the unbalanced economic devel-
opment of different cities may also play an important role in
population migrations. Such realistic factors can be merged
into the weight of the traffic between different cities. Thus it
is more reasonable that realistic population migrations pro-
ceed on weighted traffic networks, in which the nodes are the
sites of cities and the weighted link degrees are the number
of traffic connections �such as railways and highways� be-
tween cities. Recent works have exhibited that the weighted
traffic networks may have a scale-free topology �31�. The
general homogeneous case of our model, with K�k ; l � i ; j�
�kuiv�lj��, has been investigated in Ref. �32�. The results
have exhibited that the exponent 	 can indeed be larger than
2 if the indexes of the rate kernel satisfy a certain inequality.
Moreover, the analytical results are in good agreement
with the data of the population distribution of all U.S. coun-
ties. In this work, we shall further investigate and extend the
previous work presented in Ref. �32�.

The rest of the paper is organized as follows. In Sec. II,
we propose a migration-driven aggregate growth model with
a size and link dependent product kernel, and investigate the
rate equation to obtain the aggregate size distribution. In Sec.
III, we discuss the kinetic behavior of the model with a gen-
eralized kernel. In Sec. IV, we also give a simplified
migration-driven growth model and then discuss the evolu-
tion behavior of the system. In Sec. V, we use our analytical
results to imitate the data of the population distributions of
all U.S. counties during the past century. A brief summary is
given in Sec. VI.

II. ANALYTICAL SOLUTION OF THE MODEL WITH A
PRODUCT RATE KERNEL

In this section, we investigate the kinetics of the
migration-driven growth on scale-free networks by means of
the rate equation approach. It is considered that the monomer
migration reaction proceeds at a rate proportional to the con-
centrations of reactants. At time t, the concentration of
the k-mer aggregates which occupy the nodes with l links
connected to other nodes is set to be akl�t�. Then the rate
equation for our system reads �32�

dakl

dt
= ak+1,l�

i,j
K�k + 1;l�i; j�aij + ak−1,l�

i,j
K�i; j�k − 1;l�aij

− akl�
i,j

�K�k;l�i; j� + K�i; j�k;l��aij . �1�

As our motivation is to investigate analytically the depen-
dence of the aggregate growth kinetics on the topology of
scale-free networks, we assume that the rate kernel
K�k ; l � i ; j� is dependent on the number of the links connected
to the immigrant or emigrant aggregates, K�k ; l � i ; j�� l�j�.
When �=0, our model reduces to the well-understood ran-
dom migration case �16–18�. For most practical situations,
�
0. Moreover, the rate, at which one monomer migrates
from the aggregates Akl to Aij, is proportional to the values ku

and iv, at least for large k and i. Here, u and v are constant
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indexes which can interpret the degree of “richness” in the
population of a city �or equivalently, a county�. When the
values of u and v increase, the aggregate becomes much
generous in emigration and much greedy in immigration. In
the context of city population growth, it is sound that the city
with large population and convenient traffic has more sus-
ceptible emigrants and also attracts more potential immi-
grants than the traffic-inconvenient small city �32�. The re-
striction of the rate kernel follows the spirit in which the
conventional migration-driven growth model is formulated
�15,16�. Further, we consider a simplest but important case in
which there only exist the monomer aggregates at t=0
and their concentration is equal to unity. And the degree
distribution of the nodes occupied by initial monomers takes
the scale-free power-law form, P�l�� l−� ��
2�. The
monodisperse initial condition is then given as follows:

akl�0� = �� − 1�l−��k1, �2�

where the term �−1 is the normalization factor, and the rate
kernel takes the form

K�k;l�i; j� = Kkuiv�lj��, �3�

where K is a constant. Without any loss of generality, we can
set the coefficient K=1. Practically, the link number l of a
node must be no larger than the cutoff value lmax. Further, it
can also be concluded, by analyzing the structure of the rate
equation �1�, that the value range of the link number l has
almost no effect on the concrete form of the solution akl�t�.
For the convenience of algebra, we assume that the link
number can vary from 1 to �. We then determine the ana-
lytical solution of Eq. �1� in two distinct systems as follows.

A. Symmetrical system

We first consider the case with the symmetrical rate ker-
nel, i.e., u=v=
. Substituting Eq. �3� into the governing rate
equation �1�, we obtain

dakl

dt
= l���k + 1�
ak+1,l + �k − 1�
ak−1,l − 2k
akl��

i,j
i
j�aij .

�4�

Introducing the new variable, T�t , l�=�0
t dt�l��i,ji


j�aij�t��,
we then recast Eq. �4� to the following discrete equation:

dakl

dT
= �k + 1�
ak+1,l + �k − 1�
ak−1,l − 2k
akl. �5�

Equation �5� is similar to the governing rate equation for the
conventional migration-driven growth model with the sym-
metrical rate kernel K�i ; j���ij�
 �16,18�. Employing the
technique introduced in Ref. �18�, one can then deduce the
analytical solution akl�T� of Eq. �5�.

Under the above monodisperse initial condition, we can
make a scaling ansatz that the solution akl�T� �k�1� of Eq.
�5� can take the uniform scaling form �7�

akl�T� = l−�k−�T−w̃��k/S�T,l��, S�T,l� � Tz̃. �6�

Here, S�T , l� denotes the typical size of the aggregates locat-
ing on the nodes with l links, which plays a role analogous to

that of the correlation length in critical phenomena. More-
over, the scaling function ��x�	1 for x�1 and ��x�	0 for
x�1 �7�. The scaling form �6� also implies that T�t , l� should
grow infinitely with time t. Multiplying Eq. �5� with k and

summing them up over all k and l, we obtain Ṁ1�T�
=�k,lkȧkl�T�=0. So, our model obeys the mass conservation
law. One can then deduce that the scaling exponents of the
form �6� have the relation w̃= �2−��z̃. Moreover, since the
only physically meaningful values of w̃ and z̃ are both larger
than zero, � must be less than 2 �7�. Thus Eq. �6� can be
rewritten as

akl�T� = l−�k−��S�T,l���−2��k/S�T,l��, S�T,l� � Tz̃. �7�

Then the problem is reduced to determining the scaling func-
tion ��x�, the typical size S�T , l�, and the scaling exponents
�� and ��.

We first determine the typical size S�T , l� and those scal-
ing exponents. By summing up Eq. �5� we readily obtain

dMl0

dT
= − a1l,

dMl2

dT
= 2Ml
, �8�

with the shorthand notation Ml
�T�=�k=1
� k
akl�T�. Substitut-

ing Eq. �7� into Eq. �8�, we deduce two sets of evolution
equations for the typical size S�T , l� in several different cases
�such as the �

+1, �=
+1 and ��
+1 cases�. The de-
tails of this derivation are similar to those given in Ref. �18�.
Making a detailed comparison between these resulting
equations, one can then deduce �=
−1 and

dS�T,l�
dT

� �S�T,l��
−1. �9�

Equation �9� can be straightforwardly solved to yield the
asymptotical solution for 
�2,

S�T,l� � ��2 − 
�T�1/�2−
�. �10�

On the other hand, providing that the scaling ansatz �6�
is also valid for 

2, from Eq. �9� we will deduce the
self-contradictory solution S�T , l�� ��
−2��Tc−T��1/�2−
�,
where Tc is a finite positive quantity. So, the system
may evolve according to a scheme different from the above
scaling form in the 

2 case. It is found that for the
corresponding migration system in normal space, an instan-
taneous and complete gelation may take place for 

2 �16�.
As for the special case of 
=2, the aggregate size distribu-
tion can take the exponential-correction scaling form,
akl�T�= l−�k−��S�T , l���−2��k /S�T , l��, with S�T , l�� �eT�z̃. In
this work, we focus only on the solvable case of 
�2, in
which the solution of Eq. �5� consistently takes the scaling
form �6� and can be analytically obtained.

Then we further determine the t-dependent expression of
the typical size S�t , l� in the 
�2 case. According to the
definition of T�t , l�, we obtain
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dT

dt
= l��

i,j
i
j�aij�T� . �11�

Substituting the scaling ansatz �7� into Eq. �11�, we can
readily determine the analytical solution of T�t , l� and then
obtain the expression of S�t , l� as follows:

S�t,l� � 
 t1/�3−2
�l�/�2−
� if 
 � 3/2,

exp�C1t�l2� if 
 = 3/2,

�tc − t�1/�3−2
�l�/�2−
� if 2 
 
 
 3/2,

�12�

where C1 is a positive integration constant and tc denotes a
finite critical time. It should be pointed out that the critical
time tc can be determined if all initial details of the reaction
event are given. The results show that for the system with
2


3/2, the typical size diverges at a finite critical time
tc and therefore a gelation transition may emerge at this time
point �see, e.g., Refs. �8,33,34��. This phenomenon has also
been observed in the conventional migration processes in
normal space �16,18�. Moreover, it is worth noting that the
solution �12� of the typical size S�t , l� is valid only for �

1+� / �2−
� if the link number l varies from 1 to infinity.
In more realistic real-world systems, since the link number
of a node has the cutoff value lmax, the indexes may no
longer be called for the restriction �
1+� / �2−
�.

Next, by summing up Eq. �4� we obtain �k=0
� ȧkl�t�=0,

which yields �k=0
� akl�t����−1�l−�. Since Ml0�t�→0 at t

→�, we can deduce a0l�t�� l−� at large times. Substituting
the scaling ansatz �6� into Eq. �5�, we find �=�−� / �2−
�.

Finally, we determine the scaling function ��x�. The scal-
ing ansatz �7� can be supposed to be valid for all nongelling
systems and also for the gelling cases near the vicinity of the
gelation point tc �8�. Inserting Eq. �7� into Eq. �5�, we obtain
the differential equation of the scaling function ��x� as
follows:

x���x� + �2 + px2−
����x� 	 p�
 − 3�x1−
��x� , �13�

where p is such a separation constant satisfying the relation
dS�T , l� /dT= p�S�T , l��
−1. Equation �13� can be readily
solved to yield

��x� 	 C3 exp�− C2x2−
� , �14�

where C2= p / �2−
� and C3 is an integration constant. Since
our system obeys the mass conservation law, C3 and p are
related as �0

�dxC3x2−
exp�−C4x2−
��ll
−�=1. One can choose

a suitable value for p in order to have C3=1.
Thus we obtain the explicit analytical solution of the ag-

gregate size distribution akl�t�. For the nongelling system
with 
�3/2, akl�t� consistently takes the following scaling
form at large times:

akl�t� 	 C5l−�−�k1−
t−�3−
�/�3−2
�exp�− C2x2−
�, x

= C4kt−1/�3−2
�l−�/�2−
�, �15�

where C5=C4

−3 and C4 is a positive constant. Letting

�*=��3−2
� / �2−
� and �*=�+��
−1� / �2−
� and then
omitting the superscripts, one can rewrite Eq. �15� as the

corresponding expression of the aggregate size distribution
given in Ref. �32�,

akl�t� � l
�/�3−2
�−�k−2x3−
exp�− C2x2−
� ,

x 	 k�tl��−1/�3−2
�. �16�

Such substitutions are done for the sake of consistency in the
expression of the typical size with the following asymmetri-
cal system. Obviously, for a given l, Eq. �15� can reduce to
the conventional scaling form

akl�t� � k−�t−w��k/S�t��, S�t� � tz, �17�

where the exponents have the relation w= �2−��z. For this
case, �=
−1 and z=1/ �3−2
�.

For the special case of 
=3/2, the aggregate size distri-
bution approaches the exponential-correction scaling form

akl�t� � l−�−�k−1/2e−C6texp�− C2x1/2�, x 	 k exp�− C1t�l−2�,

�18�

where C6=3C1 /2. While for the gelling system with the in-
dex 2


3/2, the pre-gelation solution of the aggregate
size distribution akl�t� �t→ tc� also takes the scaling form

akl�t� � l−�−�k1−
�tc − t�−�3−
�/�3−2
�exp�− C2x2−
� ,

x 	 k�tc − t�−1/�3−2
�l−�/�2−
�. �19�

Obviously, for the 2


3/2 case, each akl�t� decays with
time and vanishes at the gelation point tc. Thus an infinite
aggregate containing all the mass of the system forms at the
critical time tc and akl�t�=0 for t� tc, namely, the gelation is
complete. It is surprisingly different from conventional ag-
gregation processes �8,33�, in which the gel aggregate con-
tains only a certain percent of the entire mass of the system
at the gelation point tc and the gel aggregate then continu-
ously grows by merging the remaining finite aggregates after
the gelation transition. Such a phenomenon has also been
studied in detail in Ref. �16�.

It is also of great interest to determine the total distribu-
tion ck�t� of all the aggregates with the same size k, ck�t�
=�l=1

� akl�t�, which is the corresponding aggregate size distri-
bution ak�t� in conventional migration-driven growth models
�see, e.g., Refs. �16–18��. Here we pay more attention to the
more interesting nongelling case of 
�3/2, in which the
system infinitely evolves in time according to the scaling
regime. By using Eq. �15� we obtain

ck�t� 	 k−�t−���y�, y = C4kt−1/�3−2
�, �20�

where �=1+ ��−1��2−
� /�, �= �1− ��−1��2−
� /�� / �3
−2
�, and the scaling function

��y� = C7�
0

C2y2−


Z��−1�/�exp�− Z�dZ , �21�

where C7=C5�−1�C2C4
2−
�−��+�−1�/�. From Eq. �20� we de-

duce that for 1�k� t1/�3−2
�, ck�t� takes the power-law form
as follows �32�:
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ck�t� � k1−
t−�3−
�/�3−2
�, �22�

while for k� t1/�3−2
�, it takes another power-law form �32�,

ck�t� � k−�t−�. �23�

In the ordinary migration-driven aggregate growth system
with the same rate kernel, it has exhibited that the aggregate
size distribution approaches the consistent scaling form
ck�t��k1−
t−�3−
�/�3−2
�exp�−C2y2−
�, with the scaling vari-
able y�kt−1/�3−2
� �18�. Obviously, the size distribution of the
aggregates with size 1�k� t1/�3−2
� in this system is identi-
cal with that in ordinary migration models. But, for the large
aggregates with size k� t1/�3−2
�, the size distribution in this
system decays as a power law, while in conventional systems
it decays exponentially �18�. Thus the kinetic evolution of
the migration-driven aggregate growth on completely con-
nected scale-free networks is quite different from that in nor-
mal space. The most interesting result of this model is that,
when the indexes satisfy the inequality �� ��−1��2−
�, the
size distribution of the large aggregates with size
k� t1/�3−2
� unexpectedly increases with time. Moreover, for
a given time, the total size distribution of large aggregates
evolves as a power law in size k, ck�t��k−�.

B. Asymmetrical system

Next, we investigate the general case with the asymmetri-
cal rate kernel �3�, i.e., u�v, which can further verify the
above intriguing behavior of the total size distribution. The
governing rate equation �1� can be reduced to

dakl

dT
= ��k + 1�uak+1,l − kuakl��

i,j
ivj�aij

+ ��k − 1�vak−1,l − kvakl��
i,j

iuj�aij , �24�

with the variable T�t , l�= tl�. Following a spirit similar to the
above symmetrical case, we also make the above-mentioned
scaling ansatz �7� for the aggregate size distribution in this
asymmetrical system.

Summing up Eq. �24� over all k yields

dMl0

dT
= − a1lWv�,

dMl2

dT
= �Mlu − 2Ml,u+1�Wv�

+ �Mlv + 2Ml,v+1�Wu�, �25�

with the shorthand notation Wu��T�=�i,j=1
� iuj�aij�T�. Substi-

tuting the scaling ansatz �7� into Eq. �25�, one can obtain two
sets of evolution equations for the typical size S�T , l�. A de-
tailed comparison between these resulting equations shows
that the scaling ansatz is valid only under the condition of
u�v and u�1. If u
v, we find dS�T , l� /dT�0 in the long-
time limit and the scaling ansatz �7� is thus invalid. So, for
the u
v case, infinite aggregates cannot be formed and only
monomer aggregates can survive finally, which is identical
with the corresponding result found in Ref. �18�. As for the
system with u�v and u
1, a gelation transition may take
place at a finite critical time.

In this asymmetrical case, we also focus only on the ki-
netic scaling behavior of the nongelling system with u�v

and u�1. In the nongelling case, we deduce, by using the
scaling ansatz �7�, that �=u and

dS�T,l�
dT

� �S�T,l��u+v−1. �26�

Since T�t , l�= tl�, we solve Eq. �26� and then obtain the
t-dependent solution of the typical size,

S�t,l� � ��2 − u − v�tl��1/�2−u−v�, �27�

which is valid only for u+v�2. For the case with u+v
2,
the scaling ansatz of the aggregate size distribution is invalid
and the system will undergo a gelation transition after a cer-
tain finite time. As for the borderline case of u+v=2, the
aggregate size distribution can take the exponential-
correction scaling form of Eq. �7�, with the typical size
S�T , l� increasing exponentially with time. On the other hand,
for this asymmetrical system, we also have �k=0

� ȧkl�t�=0. By
employing a technique similar to that used in the above sym-
metrical system, one can readily find �=�−�v / �2−u−v�.

We then determine the scaling function ��x� in the non-
gelling system with u+v�2 and u�1. We find, by substi-
tuting Eq. �7� into Eq. �24�, that the scaling function satisfies
the following differential equation:

�C8xv − C9xu − qx����x� 	 �q�2 − u� − C8�v − u�xv−1���x� ,

�28�

where C8=�ll
�−��0

�dx��x�, C9=�ll
�−��0

�dx�xv−u��x��, and q
is a constant satisfying the equation dS�T , l� /dT
=q�S�T , l��u+v−1. It is difficult to derive the consistent ana-
lytical solution of ��x� from Eq. �28�. For small x, we obtain
the asymptotical solution

��x� 	 C12exp�− C10x
1−u + C11x

v−u� , �29�

where C10=q�2−u� / ��1−u�C9�, C11=C8 /C9, and C12 is an
integration constant. For x�1,

��x� 	 
x−�v−u� if v 
 1,

x−� if v = 1,

x−�2−u� if v � 1,

�30�

where �=1−u+q / �q−C8� �q�C8�. Moreover, it follows
from Eq. �28� that the scaling function ��x� has singularity
at the point xc �here, xc satisfies the equation C8xc

v−C9xc
u

−qxc=0�. Under the monodisperse initial condition, the
scaling function ��x� may be discontinuous and ��x�=0 for
all x
xc. This is in agreement with the argument of
discontinuity of the scaling function in Ref. �15�.

Thus in the nongelling system with u+v�2 and u�1,
the size distribution akl�t� of the aggregates with size
1�k�C13�tl��1/�2−u−v� approaches the following scaling
form:

akl�t� � l−�−�k−ut−�2−u�/�2−u−v�exp�− C10x
1−u + C11x

v−u� ,

x = C13
−1k�tl��−1/�2−u−v�, �31�

where C13= �q�2−u−v��1/�2−u−v�. For k�C13�tl��1/�2−u−v�,
akl�t�	0.
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Finally, we determine the total size distribution ck�t� of all
the aggregates with the same size k. For 1�k� t1/�2−u−v�,
ck�t� takes the power-law form �32�

ck�t� � k−ut−�2−u�/�2−u−v�, �32�

which is similar to that in the ordinary migration-driven
growth model with the same rate kernel �18�. For
k� t1/�2−u−v�, ck�t� approaches another power-law form �32�,

ck�t� � k−�t−�, �33�

where �=2−v+ ��−1��2−u−v� /� and �=v / �2−u−v�− ��
−1� /�. Equation �33� shows that the total size distribution of
the aggregates with size k� t1/�2−u−v� in our model is drasti-
cally different from that of the same system in normal space
�18�. Similar to the above symmetrical system, the size dis-
tribution of the large aggregates with size k� t1/�2−u−v� in this
asymmetrical case can also singularly increase with time, if
the indexes satisfy the inequality v�� �2−u−v���−1�.
Moreover, for a given time, the total size distribution of large
aggregates also decays as a power law in size, ck�t��k−�.

III. MODEL WITH A GENERALIZED RATE
KERNEL

In order to thoroughly understand the kinetics of the
migration-driven aggregate growth on SFNs, we also inves-
tigate the model with the generalized symmetrical kernel
K�k ; l � i ; j�= �k�i�+k�i���lj��. The kernel is a typically homo-
geneous function of the reactants’ sizes k and i. Obviously, if
�=�, this generalized model will reduce to the model with
the symmetrical product kernel in Sec. II. Since the kernel is
symmetrical, we can set �
� without losing any generality.
Introducing the scaling time T�t , l�= tl�, we then rewrite Eq.
�1� as follows:

dakl

dT
= W����k + 1��ak+1,l + �k − 1��ak−1,l − 2k�akl�

+ W����k + 1��ak+1,l + �k − 1��ak−1,l − 2k�akl� ,

�34�

which is similar to the governing rate equation for an
exchange-driven growth model in Ref. �16�. Equation �34�
can be analytically solved by employing the technique
introduced in Sec. II.

We assume that the scaling ansatz �6� still hold in the
system with the generalized rate kernel. By summing up Eq.
�34� one can obtain

dMl2

dT
= 2�Ml�W�� + Ml�W���,

dMl0

dT
= − a1l�W�� + W��� .

�35�

Substituting Eq. �7� into Eq. �35�, we deduce two sets of
evolution equations of the typical size S�T , l� and then make
a detailed comparison between these resulting equations. It is
found that the modified scaling ansatz �7� is valid only in the
system with �+��3, while for the �+�
3 case, the
scaling form �7� is invalid and a gelation transition arises.

For this model, we also investigate only the kinetic scal-
ing behavior of the nongelling system with �+��3. From
Eq. �35� we deduce that the scaling exponent �=�−1 and the
asymptotical behavior of S�T , l� is

dS

dT
� S�+�−2. �36�

By solving Eq. �36� and inserting T�t , l�= tl� we deduce the
asymptotical solution of S�t , l� in the �+��3 case,

S�t,l� � ��3 − � − ��tl��1/�3−�−��. �37�

On the other hand, making use of the method introduced in
Sec. II, we deduce the exponent �=�−�� / �3−�−�� for this
case.

Now, we determine the scaling function ��x� for the non-
gelling system. Substituting the scaling ansatz �7� into Eq.
�34�, we find the following differential equation:

�C14x
1+�−� + C15x����x� + �rx2−� + 2C15 + 2C14�1 + �

− ��x�−�����x�

	�r�� − 3�x1−� − C14�1 + � − ���� − ��x�−�−1���x� ,

�38�

where C14=�ll
�−��0

�dx�x��x��, C15=�ll
�−��0

�dx
��x1+�−���x��, and r is a separation constant satisfying the
equation dS�T , l� /dT=r�S�T , l���+�−2. Since we have ���,
from Eq. �38� we can determine the asymptotical solution of
the scaling function ��x� for x�1,

��x� 	 
 exp�− C16x
2−�� if � � 2,

exp�− �C14/C15�x�−�� if � � 2,
�39�

where C16=r / ��2−��C15� for �
2 and C16= �r+C14�2
−��� / �2−��C15 for �=2. On the other hand, from Eq. �38�
one can derive the following asymptotical solution for x
�1:

��x� 	 
 x−��−�� if � 
 2,

x−� if � = 2,

x2+�−�exp�− C17x
2−�� if � � 2,

�40�

where C17=r / ��2−��C14�, �=3−� for r�C14, and �=2−�
+r /C14 for r�C14. Equations �39� and �40� accord with the
above restrictions on the scaling function ��x�. However, it
follows from Eq. �40� that C15 diverges for ��2. Thus for
the ��2 case, ��x� must be discontinuous and can be con-
sistently set to zero for all x greater than the critical value xc
in the system with the initial aggregates of any size having
finite concentration; otherwise, a complete and instantaneous
gelation transition may arise in an infinite initial system, as
pointed out by Ref. �16�.

Thus for the system with the generalized rate kernel, the
aggregate size distribution akl�t� strictly satisfies the scaling
law in the case of ����2 and �+��3,
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akl�t� � l−�−�k1−�t−�3−��/�3−�−����x�, x 	 k�tl��−1/�3−�−��,

�41�

where the scaling function ��x�	exp�−�C14/C15�x�−�� for
small x and ��x�	x2+�−�exp�−C17x

2−�� for large x. In other
cases, the system may undergo a gelation transition after a
certain finite time. The results show that for this generalized
model, the kinetic behavior of aggregate growth is also cru-
cially dependent on the reaction details such as the indexes
of the rate kernel and the initial concentrations.

Finally, we determine the total size distribution ck�t� for
this model. For 1�k� t1/�3−�−��,

ck�t� � k1−�t−�3−��/�3−�−��, �42�

which is similar to the corresponding conventional migration
system in normal space �16�. While for k� t1/�3−�−��,

ck�t� � k−�t−�, �43�

where �=2−�+ ��−1��3−�−�� /� and �=� / �3−�−��− ��
−1� /�. Similarly, we again observe that for the system with
the generalized rate kernel, the size distribution of the large
aggregates with size k� t1/�3−�−�� grows unexpectedly with
time when ��� �3−�−����−1�.

IV. A SIMPLIFIED MIGRATION-DRIVEN GROWTH
MODEL

In this section, motivated by the work of Marsili and
Zhang �11�, we propose a simplified but interesting model. In
this system, the aggregate Akl can spontaneously release
monomers to let them walk randomly on scale-free networks
with the possibility I1�k ; l�; meanwhile, the aggregate can
also capture one of the randomly walking monomers with the
possibility I2�k ; l� when they pass by the node the aggregate
locates. We assume that both the monomer gain and loss
possibilities of the aggregate Akl depend on its size k as well
as the link degree l of the node it locates. Then the rate
equation for this model reads

dakl

dt
= I1�k − 1;l�ak−1,l + I2�k + 1;l�ak+1,l − 2�I1�k;l�

+ I2�k;l��akl. �44�

We consider here a simple system in which the total mass
is conserved. Moreover, we assume that both the monomer
gain and loss possibilities of aggregates are monotonous
functions of the aggregate size and the link degree �at least
for large size and link degree�. Thus we have I1�k ; l�
= I2�k ; l�. For simplicity, we set I1�k ; l�= I2�k ; l�=k�l�. We
again introduce the variable T�t , l�= tl� and then recast Eq.
�44� to

dakl

dT
= �k − 1��ak−1,l + �k + 1��ak+1,l − 2k�akl, �45�

which is similar to the above differential equation �5�. Thus
we can readily deduce the scaling solution of Eq. �45� in the
nongelling case of ��2,

akl�t� 	 l�/�2−��−�k−2x3−�exp�− C18x
2−��, x = k�tl��−1/�2−��,

�46�

where C18 is an integration constant. For the �=2 case, the
aggregate size distribution takes the exponential-correction
scaling form akl�t�	 l−�k−2x1−g, with x=k exp�−tl�� �here
g
1�. As for the �
2 case, a gelation transition will
emerge at a finite critical time.

Further, we compute the total size distribution ck�t� in the
��2 case. For 1�k� t1/�2−��,

ck�t� � k1−�t��−3�/�2−��. �47�

For k� t1/�2−��,

ck�t� � k−�t−�, �48�

where �=1+ ��−1��2−�� /� and �=1/ �2−��− ��−1� /�.
Similar to the above-discussed models, the total size distri-
bution of large aggregates can also grow unexpectedly if the
indexes satisfy the inequality �� ��−1��2−��.

V. APPLICATION TO THE DISTRIBUTION OF COUNTY
POPULATION

The elementary migration mechanism underlies many
fields of nature and social science. In this section, we apply
our general theory of migration-driven growth on SFNs to
the demography. Here, we test our predictions with the popu-
lation distribution of all counties in the U.S. �35�. Practically,
the demographic population growth also plays an important
role in the evolution of county population. Following a spirit
similar to Ref. �15�, one can model the demographic popu-
lation growth as the monomer birth process Ak,l→Ak+1,l, with
the rate kernel J�k�. The governing rate equation �1� is then
rewritten as

dakl

dt
= ak+1,l�

i,j
K�k + 1;l�i; j�aij + ak−1,l�

i,j
K�i; j�k − 1;l�aij

− akl�
i,j

�K�k;l�i; j� + K�i; j�k;l��aij + J�k − 1�ak−1,l

− J�k�akl. �49�

Figure 1 shows that during 1900–2000 the total population of
the U.S. grows exponentially with time. Thus we can assume
that the monomer birth kernel J�k�=Jk �here J is a constant�.
In this realistic case, J=0.0129±0.0003.

For such a realistic case, we modify the scaling ansatz �6�
as

akl�t� = eJtl−�k−��S�eJt,l���−2��k/S�eJt,l�� , �50�

and have M1�t�=�k,lakl�t��eJt �32�. It is not difficult to
verify, by substituting the modified scaling ansatz �50� into
Eq. �49�, that the scaling function and exponents of the scal-
ing solution of Eq. �49� are the same as those of Eq. �1� in
the case without demographic growth. Thus the distribution
ak,l�t� /M1�t� for the realistic system with population demo-
graphic growth is equivalent to the corresponding distribu-
tion ak,l�t� in Secs. II and III. Figure 2 exhibits that during

KINETICS OF MIGRATION-DRIVEN AGGREGATION… PHYSICAL REVIEW E 74, 056102 �2006�

056102-7



1900–2000 the cumulative distribution of the counties with
small population decays with time; while that of the counties
with large population increases with time. This is in qualita-
tive agreement with the theoretical predictions of our model.
Moreover, almost all the distributions for large k approxi-
mately obey Zipf’s law, ck�t��k−	, with the exponent 	 in
the range of 2–3. Most intriguingly, the exponent 	 predicted
by our model can indeed be larger than 2 if the indexes of the
symmetrical product rate kernel satisfy the inequality
�� ��−1��2−
� or those of the asymmetrical kernel satisfy
v�� ��−1��2−u−v�, while those corresponding migration

models in normal space cannot do so �15–18�. Figure 2 also
indicates that the slopes of the cumulative distributions of
large-population counties vary for different years, while
those of small-population counties asymptotically have the
same value. Moreover, Fig. 3 further verifies that for small k,
the cumulative size distribution Ps�k , t� /M1�t��k�, with the
exponent � almost independent of time. Thus there must
exist more than one factor that may play important roles in
the population evolution of the U.S. counties. It is well
known that, besides the factor of the county’s population
size, some other factors, including the economic develop-
ment and the traffic between counties, also play important
parts in population migrations. And the economic develop-
ment status of a county can be reflected, to a certain extent,
in the traffic development of that county. Hence it is very
much necessary to take the traffic connections �link degrees�
between cities into account when we model the county popu-
lation distribution �32�. Since the traffic networks in the U.S.
always evolve continuously during 1900–2000, the indexes �
and � introduced in the rate kernel may alter with time and
therefore the exponent 	 dependent on the indexes �� and ��
may correspondingly vary for different decades as shown in
Fig. 2.

We then use the analytical solution of the symmetrical
migration system given in Sec. II to simulate the cumulative
population distribution of all U.S. counties. In Eq. �22�, the
exponents of the power-law form depend only on the index

 that represents the factor of population size. We find, by
analyzing the population data of the small U.S. counties, that
ck�t��k0.2±0.2 for small k �see Fig. 3�. Thus in Eq. �15�,

=0.8±0.2, and the exponents � and � have the relation
�=1.0+1.2��−1� /�. The actual value of � can be obtained
by analyzing the weighted traffic networks of the U.S. In our
previous work �32�, we chose 
=0.8 and �=2.1 to fit the
population distributions of all counties in the U.S. for every
two decades during 1900–2000. The results have exhibited
that the fitting curves are in good agreement with those real-
istic data. Moreover, we point out that the quantitative simu-

FIG. 1. �Color online� Semilog plot of the scaled total popula-
tion M1�t� /M1�1900� vs time t. The linear fit shows that the slope of
the data line is 0.0129±0.0003.

FIG. 2. �Color online� Log-log plots of the cumulative size dis-
tribution Ps�k , t� /M1�t� vs size k, where Ps�k , t�=� j�kcj�t�. Lower-
left insets: the sections of the cumulative distributions in the range
of 11.5� ln k�13.5. The slopes of the data lines in the left inset are
�i� 0.971±0.002 for 2000; �ii� 1.010±0.005 for 1980; �iii�
1.029±0.005 for 1960; �iv� 1.172±0.007 for 1940; �v� 1.160±0.007
for 1920; �vi� 1.30±0.02 for 1900 �32�. The slopes of the data lines
in the right inset are �i� 0.982±0.004 for 1990; �ii� 0.981±0.005 for
1970; �iii� 1.135±0.006 for 1950; �iv� 1.174±0.008 for 1930; �v�
1.27±0.01 for 1910.

FIG. 3. �Color online� Plots of the cumulative size distribution
Ps�k , t� /M1�t� vs different scaled size k. �i� Left plot: Ps�k , t� /M1�t�
vs k1.2. �ii� Upper-right plot: Ps�k , t� /M1�t� vs k1.0. �iii� Lower-right
plot: Ps�k , t� /M1�t� vs k1.4. Here, k�10 000. Thus Ps�k , t� /M1�t�
decays linearly with k� for small k, where �=1.2±0.2.
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lations depend crucially on the value of � and the
different choice of � in the range of 2���3 can yield
the similar results �32�. In order to verify this statement,
we here use �=2.5 as well as 
=0.8 to fit the
population data. Let ps�k , t�=C19�k

�dxx0.2�1
�dyy−2.5−1.8/��−1.0�

exp�−C20x
1.2y−1.8/��−1.0��, the values of �, C19, and C20 for

different years can be well chosen by analyzing the corre-
sponding population data. Figure 4 indicates that our simu-
lation results are in quantitative agreement with the realistic
population distributions almost for all k, except for very
large k. The difference between the practical and fitted re-
sults in large k might be attributed to the fact that the actual
limitation in the population size of a county has much more
influence on the cumulative distribution of the counties with
population number close to the cutoff value �32�. On the
other hand, the simulation results given by the reversible
migration model in normal space only cover the data for
small k �see Fig. 4�. So, the dependency of the rate kernel on
link degrees causes a more crucial effect on ck�t� with large k
than those with small k �see, e.g., Eqs. �22� and �23��. It is
also worth noting that the exponent 
 asymptotically keeps
the same quantity. Thus we can conclude that the topology of
the traffic network in the U.S. does play a more important
part in the population redistributions among counties during
the 20th century. Moreover, it should be pointed out, by ana-
lyzing the structure of Eq. �1�, that although the values of �
and � in this realistic case may vary with time, akl�t� can
always take the same basic form for different years, except
for the concrete values of those exponents and integration
constants. Thus it is safe to say that our migration model on
SFNs can provide useful qualitative predictions for the

county �city� population distribution of a country. Further, if
the traffic in a country has not developed so fast as to re-
markably change the topology structure of the weighted traf-
fic networks for a fairly long period, our migration model
can also be used to quantitatively or semiquantitatively
mimic the evolution behavior of the population distribution
of that country.

On the other hand, the model with the asymmetrical prod-
uct or generalized kernel can also be used to simulate the
population size distribution of all counties in the U.S. if the
values of the indexes of the rate kernels are correctly chosen
based on the realistic data. Furthermore, providing that the
simplified model proposed in Sec. IV is a reasonable candi-
date for this real-world case, Fig. 3 indicates that the index �
of the rate kernel must be 0.8±0.2. Then Eq. �44� can be
rewritten as

dakl

dt
= l���k − 1��ak−1,l + �k + 1��ak+1,l − 2k�akl�

+ J�k − 1�ak−1,l − Jkakl. �51�

Obviously, when ��1, the last two terms in the right-side
hand of Eq. �51� dominate over the first four terms, at least
for large k. So, the scaling solution of Eq. �51� may be quite
different from that of Eq. �44� in the case without demo-
graphic growth. This indicates that the simplified model is
not suitable to interpret this realistic population distribution
case for large k.

VI. SUMMARY

We have proposed an aggregate growth model on com-
pletely connected scale-free networks, in which the aggre-
gates grow through the reversible monomer migrations be-
tween any two aggregates locating on different network
nodes. By employing the rate equation approach, we have
analyzed the evolution behavior of the size distribution of
aggregates.

The system with the product kernel K�k ; l � i ; j��kuiv�lj��

has been investigated. For the symmetrical system with
u=v=
, the aggregate size distribution akl�t� approaches the
scaling form �6� in the 
�3/2 case; while for the 

3/2
case, the system may undergo a complete gelation transition
at a finite critical time. Additionally, the typical size S�t , l� of
the aggregates locating on the nodes with l links grows as
l�/�2−
�t1/�3−2
� in the nongelling case of 
�3/2. For the
asymmetrical system with u�v, akl�t� approaches the scal-
ing form �6� only in the case of u+v�2 and u�1. For the
u
v case, the typical aggregate size decays with time and
therefore only monomer aggregates can survive finally.
While for other cases, a gelation transition may take place in
the system at a critical time point. In the nongelling case of
u+v�2 and u�1, the typical size S�t , l� grows as
�tl��1/�2−u−v�. Additionally, it is worth pointing out that for the
asymmetrical system, the scaling exponent � is dependent
only on the index u for susceptible emigrations and indepen-
dent of the index v for immigrations. Thus we can conclude
that the susceptible monomer emigration of aggregates may
play a more important role in the kinetics of the system than

FIG. 4. �Color online� Log-log plots of the fitted cumulative size
distribution ps�k , t� vs size k. Lower-left insets in both plots: log-log
plot of the practical and fitted cumulative size distributions vs size
k. In the left inset, the solid lines are our fitted size distributions for
2000 �lower� and 1940 �upper�, while the curves with symbols ��
for 2000 and � for 1940� are realistic population distributions �see,
also, �32��. In the right inset, the solid lines are our fitted size
distributions for 1990 �lower� and 1930 �upper�, while the curves
with symbols �� for 1990 and � for 1930� are realistic distributions.
The dotted lines are the fitted distributions given by Ref. �16�. The
comparisons between the realistic and fitted population distributions
for the other years are similar to the above examples.
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the migrant acceptability of another aggregate �18�. Most
intriguingly, for such migration-driven growth models on
SFNs, the evolution behavior of the total size distribution
ck�t� of the aggregates with the same size falls in two distinct
regimes, which is quite different from the conventional
migration systems in normal space.

For the system with the generalized symmetrical kernel
K�k ; l � i ; j�� �k�i�+k�i���lj��, the aggregate size distribution
takes the scaling form �6� in the �+��3 case, while the
gelation transition can emerge after a sufficient long time in
the �+�
3 case. It is also worth noting that an infinite
initial system may undergo an instant and complete gelation
transition in the case of max�� ,��
2. In the nongelling
case, the exponent � of the scaling solution is always depen-
dent only on the smaller one of the two indexes � and �, and
the typical size S�t , l� grows as �tl��1/�3−�−��. Moreover, the
total size distribution ck�t� also differs drastically from that in
conventional migration systems in normal space.

The kinetic behavior of a simplified model has also been
shown by considering the rate kernels I1�k ; l�= I2�k ; l��k�l�.
The aggregate size distribution takes the scaling form only in

the ��2 case. While for the �
2 case, a gelation transition
can arise in the system at a certain finite time. In the nongel-
ling case, the typical size grows as S�t , l�� �tl��1/�2−��. Simi-
lar to the above-discussed general migration models, the total
size distribution ck�t� for large k is quite different from that
for small k in this simplified model.

Finally, we have discussed the application of the
migration-driven growth model on SFNs to the population
distribution of counties in the U.S. Our results are in quan-
titative agreement with the realistic population data during
1900–2000. It is verified that our model can satisfactorily
interpret the rule of the county population distribution.
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